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Summaff 

Solutions for the equations of motion of an incompressible second-grade fluid are obtained by employing 
hodograph-transformation methods. By introducing a suitable Legendre-transform function the basic equations 
are recast in terms of this function, and the conditions which this function should satisfy are stated. Several 
illustrations of the method are considered and the results for stream-lines, velocities and pressure distribution are 
compared with the corresponding results for viscous fluids. 

1. Introduction 

In recent years, transformation techniques have become some of the powerful methods for 
solving non-linear partial differential equations. Amongst many, the hodograph transfor- 
mations have gained considerable success in gas-dynamics problems. Ames [1] has given 
an excellent survey of this method together with applications in various other fields. 
Recently, Chandna, Barron and Smith [2] have used the hodograph and Legendre 
transformations to study plane steady viscous flow problems. 

In the present paper we also employ hodograph and Legendre transformations to study 
the flow problems in a second-grade fluid [3]. We first consider the interchange of 
dependent and independent variables and then introduce a Legendre-transform function 
of the stream function and recast all the equations in terms of this transformed function. 
The equation this function must satisfy is then determined and several illustrations to 
display the use of the method are considered. With regard to the streamlines and velocity 
distribution we find that some of the results for the viscous fluids hold also for 
second-grade fluids. In some cases we find that the non-Newtonian nature of the fluid 
eliminates certain flows which are otherwise possible in Newtonian fluids. The dynamic 
pressure distribution, in almost all cases, appears to be different to that obtained for 
viscous fluids. 

We point out that our approach is an inverse method in the sense that we select a form 
for the Legendre-transform function and then find conditions when such a function will 
be possible for physically meaningful situations. We then determine the stream function, 
velocity components and pressure distribution, via certain suitable relations, for such 
possible cases. The importance of the inverse methods in non-Newtonian fluids has 
recently been pointed out in the related work [4]. 
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2. Basie  equations 

The basic equations governing the motion of a homogeneous incompressible second-grade 
fluid, neglecting thermal effects, are 

div v = 0, 

div T + 0 / =  0tS, 

and the constitutive equation for the Cauchy stress T [3], 

T= - p l  + #A 1 + alA 2 + a2 A2. 

(a) 

(2) 

(3) 
Here v is the velocity, p the density, [ the body force per unit mass, p the dynamic 
pressure, p the coefficient of dynamic viscosity and a I and a 2 are the normal-stress 
moduli. The Rivlin-Ericksen tensors A1 and A 2 are defined as 

A 1 = (Vv) + (Vv) T, A: = A', + (Vv)TA1 + A, (Vv) .  (4) 

If we substitute (3) in (2) and make use of (4) we get 

- g r a d  p +#V2V+ Otl[V2Vt + V2(V XV) XV 

+grad(v .  V2v+ ¼1A112)] + ( a  1 + a2) divA 2 + O f =  p/~, (5) 

where V 2 denotes the Laplacian, v t denotes the partial derivative of v with respect to time 
and 

IA112 = tr AIA T. 

In the case of steady plane flow, when body forces are absent, (1) and (5) reduce to 

au av 
~x + ~y  = 0, (6) 

[ ou o~] ov 
P U-~x+V ~ i~x 

[ a - -~ [zu°Zu+zv  a2u 4 / a u ]  2 
=~V2U+al OX[ ax 2 ax~y "}- ~ x ]  

o ~  + a ~  + 2 [ ~  ~ t  ~ Oyljl  (7) 
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av 3v) 3__p_p 
P U O x + V ~ y  +ay 

+2aP-~ °c 3 [2u 320 +_ 320 4 (3v l  2 
-~y}+3--yy~ 3x3y 2 V ~ y  2 +  ~,Oy ] 

+ 2~-~ ( 30+3ut/ [a-~( 3vl2 3vl2~] 
-~x 3y]) +a2 4(3y]  + ( ~ y + 3 x ]  ]]" (8) 

Equations (6)-(8) are three partial differential equations for three unknowns: u, v and p. 
We introduce the two-dimensional vorticity function to and a generalised energy function 
h as 

3v Ou 
to 3x 3y ' (9) 

h = ½pq2 _ al(U v 2 u + vV 20) -¼(3a ,  + 2a2)[  A, 12 + p ,  (10) 

where 

X7 
2 02 ~2 

_ _  q q 2  = U 2 + 0 2 
3X 2 3y 2 ' 

and 

IA'I2=4( 3u12+4(Ov-~x] [Oy)2+2[OU[3y+Ox] 

When (9) and (10) are employed in (7) and (8) we find that (6)-(8) are replaced by a 
system of four partial differential equations: 

au av Ov Ou 
+ w- -  = O, to. Ox ay oy 

3h 3to 
= p v t o  - g ~ y  - a l v v  2to, 

a---x 
3h ato 
-~y = -puto + g~x + aluv 2to, 

(11) 

for the four unknown functions u, v, w, h, of (x, y). Once a solution for these is 
determined, the pressure p is obtained from the generalised energy expression (10). 
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3. Equations in the hodograph plane 

Let the flow variables u(x, y), v(x, y)  be such that, in the flow region under considera- 
tion, the Jacobian 

J O(u, v) 
o(x, y~ * o, (12) 

satisfies 0 < [ J [ < o¢. In such cases we may consider x and y as functions of u and v and 
the following relations hold: 

Ou Oy Ou Ox 
a S - J o y  ' ~ =  - J-O--do ' 

0v 0y 0__U_v = 0x 
~x = - J - ~ u  ' Oy J ~ u '  

(13) 

O(u,v) [O(x, y) ]-' 
J(x, y) O(x, y) O(u, v) =j(u, v), (14) 

Of O(f, y) jO(f, y) .O(f, y) 
ox O(x, y) o(~, ~) = j ~  ~)' 
Of O(f, x____~) O(x, f)_ .O(x, f )  
Oy O(x, y) =J O(u, v)-- =J ~ v)'  

(15) 

where f=f(x,  y) is any continuously differentiable function and f(u, v) is its trans- 
formed function in the (u, v) plane. 

Now we take up the four equations (11) and employ the above transformations in these 
equations. We find that the transformed system of equations in the hodograph plane 
(u, v) is given as 

Oy Ox 
O---v + -~u = O, (16) 

Ox Oy ) 
J 0v 0u = ~ '  (17) 

O(x, jw,) O(-y, jw~) ] (18) 
J°(h' o) po,o+ #jw, +,~,oj O(u, o) ~ o(u, o) 

O(x, h) [ O(x' jW1) O(-y' jW2) ] (19) 
J O(u, v) = -pu~ + I.tjW2 + alu j O(u, v) ~- O(u, v) ' 

where 

w, = Wl(U, ~) 
a(x, ,~) a ( -y ,  oa) 

w~ = W~(u, ~) (2o) O(u, ~) ' O(u, ~) 
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This is a system of four partial differential equations in the four unknown functions x, y, 
to, h, of (u, v). Once a solution x = x ( u ,  v), y = y ( u ,  v), to = to(u, v), h = h(u, v) is 
determined, we are lead to the solutions u = u(x, y), v = v(x, y) and therefore to = 
to(x, y), h = h(x, y) for the system (11). Equation (16) implies the existence of a function 
L (u. v), called the Legendre-transform function of the stream function ~k (x, y), such that 

and 

OL aL 
L.= a-- i f  = - y ,  L , , = - ~ v = x  (21) 

L(u, v) = v x -  uy + +(x, y). (22) 

On introducing L(u, v) as defined by (21) or (22), we eliminate x(u, v) and y(u, v) 
from (16)-(19). We find that (16) is identically satisfied and the other equations take the 
form 

j [ L . .+  L,,o]=o;(u, o). (23) , 

a(h, L.) [ ] 
J a(u,  v) pvto+#jw] +alv j a(L°'a(u,JW1)v) + a(L,,a(u,jW2)v) ' (24) 

.O(L,,, h) [ O(L°' jW1) a(L"' jW2) ] (25) 
J a(u, o) = -puto + #jw2 + aluj a(u, v) + a(u, v) ' 

where now 

a( tv ,  ~ )  
w, = 0(u, o) ' 

a(L., to) 
W2- a(u, v) (26) 

and 

j = [ L..Loo- & ] - '  (27) 

Now we make use of the integrability condition 

• o . o [ a ( L . , h ) ]  ( JLuo-~o -JL"v-ff-uu ) J a(u, o) 

[ ~L a "L 0 ~[ .a(Lo, h ) ]  =~J ~.~o-J .o~.)[J ~(T, o) j' 

to eliminate h(u, o) from (24) and (25) and obtain 

~,[o O(Lo, j{0(Lo, jW,)/a(u, o)+ O(L., j ~ ) / a ( . ,  .)}) 
[ a(=, v) 
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+ u O(L., j{O(Lo, jW,)/O(u,o(u,V)+O(L.,v) jW~)/O(u, v)})] 

[ O(Lv, jW1) O(L., jW2)]_o(vW ~ + uW2) =0. (28) 
+~ ~-~, ~5 ~ ~(u, v) 

Collecting the results, we have: 

THEOREM 1: If L(u, v) is the Legendre-transform function of a stream function of the 
equations of motion governing the plane steady flow of an incompressible fluid of the second 
grade, then L(u, v) must satisfy 

[ O(L v, j{O(Lv, jWl) /O(u ,  v)+O(L,, ,  jW2)/O(u, v)}) 
~q v O(u, v) 

+u O(Lu , j{O(Co, j W,)/O(u,O(u, v) + O(L.,o) jW2)/O(u, v)})] 

+1~ O(u,v)  + O(u,v)  - o [ v W ' + u W z ] = O '  (29) 

where W1, WE, j and 60 are given by (26), (27) and (23). Given a solution L = L(u, v) of 
(29), we can find the velocity components as functions of (x, y) from (21). Vorticity, 
generalized energy function and pressure are then obtained from (10) and (11). 

It is also of some interest to develop the flow equations in polar coordinates (q, 0) in 
the hodograph plane. On writing 

u + iv=  q e i°, (30) 

we note the following transformations: 

0 0 sin0 0 0 ~q cos0 
3u coS00q q 00' ~v sin0 -~ q a0 

~(F, G) 0(F*, G*) ~(q, 0) 1 ~(F*, G*) 
0(u ,v)  0(q, 0) 0 (u ,v)  q O(q,O) 

(31) 

where F(u, v)= F*(q, 0), G(u, v)= G*(q, 0) are continuously differentiable functions. 
On using these relations, and regarding (q, 0) as new independent variables, the expres- 
sions for j, o~, W1 and/412, in the (q, 0) plane, become 

j*=q4[q2L'~q(qL~ + L'~o)-(L*o-qL~o)2] - ' ,  (32) 

!L,] tO* =j*  t~q -t- -~7 L'$o + q- q q]' (33) 
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W~' = W 1 (q cos O, q sin O) = 
a(sin OLd+ c°s OL'~, to*) 

1 q 

q O(q,O) 
(34) 

sin 0 . 
1 ~(cos0L~- q L o,to*) 

Wz* = WE (q COS O, q sin O) = -- q O(q,O) (35) 

The terms involving the dynamic viscosity/t and normal-stress modulus al are similarly 
transformed in the (q, 0) plane as 

1 {  0 (sin OL~ +O(q, c°s 0 L~" q O) j*W~') O(cos OL~ - sin O * ~(-~,q o)L°' j'W2*) } 

= X*(q, O) (say) (36) 

and 

1 ~( sin OL~ + c°s O L$' j'X*) 
q 

q sin 0 ,,, ~(q, g)  

1  (cosoL  sinO. j*x*)] q L°' 
+qcosO q ~-(~, ~-) (37) 

Summarizing the results, we have: 

COROLLARY: If L*(q, 0) is the Legendre transform function of a stream function of the 
equations of motion for the plane steady incompressible flow of a second-grade fluid, then 
L*(q, 0) must satisfy 

O/1 

O(sin OL'~ + c°s OLd', j'X*) 
q 

sin 0 O(q, O) 

+cos oO(Cos OL~ - (  ~ - ~  )L$, j'X*) 
O(q,O) 

+tzX* - pq(sin OW~ + cos OW~) = O, (38) 

where j*, to*, W~, I4~2 and X* are respectively given by (32), (33), (34), (35) and (36). 
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Given a solution L* = L*( q, O) of (38), we can determine u, v by making, use of (30), and 
( x, y )  are expressible as 

sin 
x = sin OL~ + cos 0 L~', Y = 0 L~' - cos OLd. (38a) 

q q 

4. Illustrations 

In this section we consider some of the applications of  Theorem 1 and its corollary. 

(1). As a first application we let 

L ( u ,  v ) = A u "  + Bv" (39) 

be the Legendre t ransform function where m 4: 0, n 4= 0, m 4= 1, n ¢ 1 and where A, B are 
nonzero  constants  and m, n ~ R. If  we substitute (39) in (23), (26) and (27), we obtain 

j = [ n m ( m -  1 ) ( n -  1)ABum-2v " -2] -1 ,  

1 1 

B n ( n -  1)v " -2  A m ( m -  1)u " - 2 '  

Bn(n  - 1) (m - 2 )u - "+ lv  "-z  
I4"1 = A m ( m - 1) ' 

A m ( m  - 1)(2 - n)um-Zv -"+1 
w2= 

Bn(n  - 1) 

(40) 

On  employing (39) and (40) in (29) we find that L(u ,  v ) = A u m +  By" can be the 
Legendre t ransform of a stream function for a plane steady flow of a second-grade fluid, 
provided that (for all u and v) m and n satisfy 

Ot 1 
A m ( m  - 1)(2 - n ) (3  - 2 n ) ( 4  - 3n)  u,,,_lv3_3, , 

B3n3(n -- 1) 3 

+ Bn ( n  - 1)(m._____~- 2) (____2__m_ - 3)(3m - 4) ] 
A 3 m 3 ( m  - 1) 3 u3-3mvn-I  

B(n  - 1 ) n ( m  - 2 ) (2m - 3) u2_2.,,v._ 2 

A 2 m 2 ( m  - 1) 2 

A m ( m  - -  1)(___2--__n)(___3 - 2n )  ] 
+ B2n2(n  - 1) 2 um-2v2-n 

J 

+ o [ B n ( n - 1 ) ( 2 - m ) u l - m v " - l A m ( m - 1 ) ( n - 2 ) u m - l V l ] A m ( m _ l )  + ~nn(-~-~T ) - -  = 0 .  (41) 
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44, (m - 1)(1 - n)(n - m) ul_2mol_2n 
mn (1 - m - n)2 

+ n ( n -  1)(2n + m -  2)(3n + 2 m -  3) u3_2mo_2n 
m3(1 - m - n) 2 

Equation (41) is satisfied only for m = n = 2, and (39) and (40) then become 

L(u, o)=Au2 + Bv 2, 
1 A + B (42) 

J = 4 A B '  o~= 2A---B' Wl(u, v ) =  W2(u,o)=O. 

Substituting (42) in (21), we find 

u(x, y) = - y / 2 A ,  v(x, y) = x /2B,  (43) 

and the stream lines and the pressure turn out to be, respectively, 

x2/( aB ) + yZ/( aA ) = constant, 

+ 2"2) (A-B)2 8 # 2 + y 2 )  + (44) p(x,  y )=  8- -~  (x  +P0" 

We remark that the stream lines are similar to those obtained for the viscous fluid but the 
pressure function is different from the viscous-fluid case. 

(2). In the next example we consider 

L(u, v) = umv ", (45) 

to be the Legendre-transform function with m :~ 0, n :/: 0 and m + n ~ 1. 
As before, using (48) in (23), (26) and (27), we find 

j = [u2-2"o2-2"]/[mn(1 - rn - n)] ,  

( ( m - l )  02 ( n - l )  ) 
a~= n ( 1 - m - n )  +m(1--~n -Cn) u2 u-mo-n' 

re (m-- l )  u- 1 n (n- -1 ) (2n+m--2)  (46) 
W1 ( 1 - m - n )  - r e ( l - m - n )  uv-2' 

w 2 = m ( m - 1 ) ( 2 r n + n - 2 )  n ( n - l )  v_l.  
n ( 1 - m - n )  v u - 2 - ( 1 - m - n )  

On the substituting the above expressions in (29) we note that (45) can be the Legendre 
transform of a stream function for a plane steady flow of second-grade fluid provided that 
(for all u and v) m and n satisfy 
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m ( m  - 1)(2m + n -- 2) (3m + 2n -- 3) u_Z,,_,v3_2,~| 
1 

n3(1 -- m -- n )  2 J 

[ 2 (m - 1)(1 - n) n (n  - 1)(2n + m - 2)(3n + 2m - 3) u2_mu_n_ 2 
#[ ~ S m~-~ u--mo--n"~ m 2 ( 1 _  m _ n )  2 

+ m ( m  -- 1)(2m + n - 2)(3m + 2n -- 3) u_Z_,,,v2_,, 

n2(1 -- m - n )  2 

2 m ( m -  1) 2n(1 - n) ] 
+ p u -  iv + uv-  l = O. (47) 

n m 

Clearly, (47) is satisfied if m = n = 1, and (45), (46) then reduce to 

L(u, v)=uo, (48) 
j = - l ,  e = 0 ,  ~ = ~ = 0 .  

where j ,  co, W1, W 2 are functions of  (u, v). 
On  proceeding as in the previous example, we now find 

u(x ,  y ) = x ,  o (x ,  y ) =  - y  (49) 

and 

p ( x ,  y )  = - ½ p ( x  2 + y 2 )  + 2 ( 3 a  1 +  2 a 2 ) +  C, (50) 

where C is an arbitrary constant.  The stream lines are given by 

yx  = C 2, (51) 

which are rectangular  hyperbolae.  
We point  out  that  the presence of  the normal  stress modulus  a 1, that  is the considera- 

t ion of  non-Newton ian  nature of  the fluid, eliminates two other possible solutions, namely 
m = 1, n = - 1, 6g --= p and  m = - 1, n = 1, 6/~ = p which are possible for viscous fluids 

[21. 

(3). In  the remainder  of  this section, we investigate the solutions of  flow problems in 
(q, O) coordinates.  Let 

L*(q ,  8) = F ( q )  (52) 

be the Legendre- t ransform function such that F'(q)  ~ 0, F"(q )  # O. On substituting (52) 



in (32), (33), (34), 35), we get 

q _-j*(q), 
J* F'(q)F"(q) 

to* = qF"( q) + F'( q) = to,( q), 
F'(q)F"(q) 

t 

W~ F'(q) cosO(qF"(q)+F' (q) )  
q r ' (q)F"(q)  

r 

q F'(q)F"(q) 

= - - F '  cos Oto,,(q) 
q 

= - - F '  sin Oto,,(q) 
q 
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(53) 

Since to(x, y)  is harmonic, the terms involving a 1 in the linear momentum equations in 
system (11) are identically satisfied, and after considerable simplification, the pressure 
distribution turns out to be 

P= p{[~k,k3 + ~k2(x 2 + y2)][ln(x 2+y2)]2  

+ [(½k,k2_ ~k2)(x 2 + y2) + k2k3 ] ln(x 2 + y 2 )  

(57) 

to(x, y )  = k  1 ln(x 2 + y 2 )  + k l  + 2k2. 

[ v(x, y ) = x  ½k I ln(x2+y2)+k2 + y2 
X 2 _t_ 

[ k3 1 u(x, y ) = - y  ½k I ln(x2 + y2)+k2 + x2 + y-------- ~ , 

When these relations are employed in (36), (37) and (38), we find that the terms involving 
a t, the normal-stress modulus, and the terms involving p, the density, both become 
identically zero, and we obtain the condition 

¢ 

to*' + F ' (  to*' 1 F"  ] = 0. (54) 

For to*(q) :~ 0, the above equation, after integrating twice with respect to q, yields 

to*(q) = C In F ' +  D, (55) 

where C and D are arbitrary constants. Using (53) and (38a) we find that 

q = klr In r + k2r + k3/r, (56) 

where r =  x ~ + y  2 and k I = ½C, k 2 = ¼(2D - C) and k 3 are arbitrary constants. With 
the help of (56) and (38a) we find that 
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1 2 k2 k2k3 } +[~k2+:k2-½k'k2](x2+y2) 2(x2+y2)  

- 2 # k l  tan -1 +2eqk 1 ½klln(x2+y2)+k2+x2+y---------- ~ 

3 a l + 2 a 2 [ k 2 +  4k 2 4klk3 ] 
+ 2 (x 2+y2)2 x 2+y2 +Po. (58) 

The stream function q,(x, y) is given by 

~k(x, y ) =  (x 2 +y2)[~kl  ln(x 2 +y2)  + ½k 2 -  ¼k~] + ½k 3 ln(x 2 +y2)  + C. 

We point out that the pressure (58) is considerably different from the viscous-fluid case. 
We note that (54) is also satisfied for ~* = constant = o~ 0. In this case the velocity 

components and vorticity are given as 

u(x, y) ky ½t%y, 
x2 + y2 

kx v(x, y) + ½o%x, (59) 
X 2 +y2 

- -  ~7 2t/t ---- t 0 0 ,  

and the stream function is given by 

4,(x, y )=f(x ,  y ) -  ~tOo(X 2 +y2) ,  

where f(x, y) is a harmonic function. 

(4). Now we investigate the solution of a flow problem when L*(q, 0) is a function of 0 
only. We assume 

L*(q, 0) = G(O) (60) 

to be the Legendre transform for the system of equations (38) such that G'(O)--/* O. On 
employing (60) in (32), (33), (34) and (35) we find that 

-q__i_' 
j*(q, 0)--  G,2(0) ~o*(q, 0 ) =  _q2 G"(O) , a , 2 ( o ) ,  

l~l(q,  0 ) =  G"(O) cos 0-2G"(0) s ins  
qG'( O) 

G " (0) sin 0 + 2G"(O) cos 0 
W~2(q, O)= - qG'(O) 

(61) 



Using these relations in (38), we obtain the condition 

4alq 2 [G t4) + 4G"] =/tG '3 [G (4) + 4G"] + 2pG'4G ''. 

The above equation is satisfied if 

Gt4)+4G"=O and #(G(4)+4G")+2pG'G"=O. 

Thus 
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(62) 

(63) 

G(O) = AO + B, (64) 

where A, B are arbitrary constants, is the solution of (62). 
Proceeding as before, we find 

Ay (65) Ax v(x,  y ) =  x2-t-Y 2 u( x,  y ) = x2 + y2 " - - "  

The stream function q,(x, y) and pressure p(x, y) take the form, respectively, 

ik(x, y)  = t a n - l ( y )  + C, 

pA: 3a, +2ot218/_aa / ~Ix II  2 32AZx2y 2 ] 
P ( x ' y ) = C - 2 ( x Z + y 2  ) + 4 [ ~ a x ~ x 2 + y 2 ] l  + (x 2 q _ y 2 )  4 . (66) 

(5). Finally we consider the case when 

L*(q, O) = q2G(O). 

Following the previous examples, we note that 

j* -- [4G 2 + 2GG" - G '2 ] - '  = i f ( 0 ) ,  

4G + G" 
~* = = ~ * ( O ) ,  

[4G 2 + 2GG" - G '2 ] 

~*' (2G sin O + G' O), = q c o s  

o~*' (2G cos 0 - G' sin 0). 
~ = -b-- 

Substituting these relations in (38), we get 

2aa[Gj*{(4G 2 + G'2)j*60*'}'] ' 

#[(4G 2 + G'2) j*o~*'] ' -  2pGto*'q 2 = O. 

(67) 

(68) 
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Equation (68) is satisfied if 

2a,[Gj*((4G 2 + G'2) j'to*')'] ' + ~[(4G 2 + G'2)j*to*'] '  = 0 

and 

(69) 

2pGto*' = 0. (70) 

Since G ~ 0, p ~= 0; therefore, to* = constant = too. Hence, the solution and the rest of the 
analysis is the same as in the viscous-fluid case [2], except that the pressure is now given 
by 

- - + P 0 .  (71) - -P  2 8(30tl + 20t2 ) k 2 p(x, y)---~3(x + y 2 ) +  
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